Massenspektrometrie

1. Vorausgesetzte Kenntnisse

Grundlagen des Atom- und Molekülaufbaus, Bindungsenergien organischer Verbindungen, elektronische Anregung und Ionisierung, atomare Massenskala, Massendefekt, Isotopie; Wirkung elektrischer und magnetischer Felder auf geladene Teilchen.

2. Literatur

- [1] D.H. Williams, J. Fleming "Strukturaufklärung in der organischen Chemie" G. Thieme Verlag Stuttgart 1985/1990
- [2] H. Naumer, W. Heller (Hrsg.) " Untersuchungsmethoden in der Chemie" G. Thieme Verlag Stuttgart 1986/1990
- [3] W. Benz " Massenspektroskopie organischer Verbindungen" Akadem. Verlagsges. Frankfurt/M. 1969
- [4] H. Kienitz " Massenspektrometrie" Verlag Chemie Weinheim 1980
- [5] Schröder, E. "Massenspektrometrie" Springer Verlag Heidelberg 1991

3. Ziel des Versuches

Kennenlernen des Grundprinzips massenspektrometrischer Substanzidentifizierung. Interpretation von Massenspektren.

4. Methode

- Die Massenspektrometrie ist eine wichtige Methode der modernen Analytik; Ziel ist sowohl die Strukturaufklärung und Substanzidentifizierung (qualitative Analyse) als auch die quantitative Analyse, insbesondere im Spurenbereich
- die Nachweisgrenze geht bis in den Femtogramm Bereich hinunter (10⁻¹⁵ g)
- die Aufnahme eines Massenspektrums erfolgt in folgenden Teilschritten, die auf unterschiedliche Art und Weise realisiert werden können :
 - die zu untersuchende Probe wird in das Massenspektrometer eingebracht (Probenaufgabe)
 - die Probenmoleküle werden ionisiert (Ionenquelle)
 - die gebildeten Ionen unterschiedlicher Masse werden als bewegte geladene Teilchen auf verschiedene Weise nach ihrem Masse/Ladungs - Verhältnis aufgetrennt (Analysator)
 - die getrennten Ionen werden detektiert (Detektor)
 - der gebildete Ionenstrom wird registriert und ausgewertet (Computer)

Eine kleine Substanzmenge ($10^{-9}...10^{-6}$ g) wird - z.B. indem sie verdampft wird - in die Ionenquelle des Massenspektrometers dosiert. Dort werden die Substanzmoleküle ionisiert. Dies geschieht in der Regel durch Anwendung der sog. Elektronenstoßionisation. Dabei wird Substanzdampf mit einem Druck von typisch $10^{-6}...10^{-5}$ mbar mit Elektronen bombardiert, deren Energie E_0 deutlich größer ist als die Ionisierungsenergie I eines Moleküls. Je nach Art des Moleküls liegen Ionisierungsenergien im Bereich I = 7...15 eV 1 . Die Energie der stoßenden Elektronen ist im Interesse einer hohen Ionenausbeute hoch und beträgt typisch

 $^{^{1}}$ 1 eV · N_A = 96.49 kJ / mol = 23.06 kcal / mol

70 eV). Nur ein kleiner Teil der Elektronenenergie wird auf das gestoßene Molekül übertragen. Dieser Anteil liegt nur wenige eV (Größenordnung 5 eV) über der Ionisierungsenergie des Moleküls. Das bedeutet, dass die Überschussenergie im Allgemeinen nur ausreicht, um im Mittel lediglich eine Bindung zu spalten. Das primär erzeugte Molekülion ist in der Regel ein Radikalkation ² und liegt zunächst in einem hochangeregten Zustand ³ vor.

$$M + e \rightarrow [M^{+ \bullet}]^* + 2e$$

Diese Anregungsenergie kann zum einen auf verschiedene Schwingungsfreiheitsgrade des Molekülions verteilt werden, ohne dass das Molekül dissoziiert. In diesem Falle entsteht das (schwingungsangeregte) Molekülion, dessen Massenzahl der des Muttermoleküls entspricht. In den meisten Fällen dissoziiert jedoch das angeregte Molekülion in verschiedene Fragmente. Schematisch können die Fragmentierungen folgendermaßen dargestellt werden (das Molekül M soll die Zusammensetzung A - B - C - D haben):

Die Häufigkeit, mit der Fragment - Ionen eines Moleküls auftreten, hängt von der Struktur des Moleküls und von der Größe der Überschussenergie ab.

Die in der Ionenquelle erzeugten Ionen werden im Analysator nach ihrem Verhältnis von Masse / Ladung (m/q) getrennt. Bei Quadrupolmassenspektrometern werden die erzeugten Ionen zunächst in einem elektrischen Feld beschleunigt. Durch Überlagerung zeitlich konstanter und hochfrequenter elektrischer Quadrupolfelder wird erreicht, dass nur Ionen mit einem einzigen Verhältnis von Masse / Ladung stabile Bahnen auf ihrem Weg durch den Analysator beschreiben und den Detektor erreichen. Werden die Ablenkfelder zeitlich variiert, erscheinen die Ionen mit unterschiedlichem m/q zeitlich nacheinander am Detektor. Die Abhängigkeit des Ionenstroms von der Ionenmasse (bzw. von m/q) wird als Massenspektrum bezeichnet.

Bei Verwendung von 12 C als Basis der atomaren Massenskala haben alle Atomkerne nahezu ganzzahlige Massen (12 C hat per def. die Masse 12.000 000 u (unified atomic mass units)). Molekülfragment - Ionen werden deshalb durch eine ganzzahlige Massenzahl charakterisiert. Beispielsweise haben folgende Moleküle die Massenzahl 28 u: CO (27.9949), N₂ (28.0061), H₂CN (28.0187) und C₂H₄ (28.0313).

Die geringfügigen Abweichungen von der Ganzzahligkeit können bei Massenspektrometern sehr hoher Auflösung (sogenannte "doppelfokussierende" Spektrometer) genutzt werden, um jedem gemessenen Molekülfragment - Ion eindeutig eine Summenformel zuzuschreiben.

² Radikalkationen sind Ionen mit ungerader Elektronenzahl und werden mit + • symbolisiert

³ der angeregte Zustand wird mit * charakterisiert

Bei den in der Analytik häufig verwendeten einfachfokussierenden Spektrometern werden jedoch nur ganze Massenzahlen bestimmt, so dass die Zuordnung der Fragmentsummenformeln in der Regel mehrdeutig ist. Gelegentlich können jedoch Isotopie-effekte (s. unten) ausgenutzt werden, um auch bei geringer Auflösung die Zusammensetzung der Fragmentionen eindeutig zu ermitteln.

Die Substanzidentifizierung wird bei modernen Geräten durch einen computergestützten Vergleich der gemessenen Spektren mit den in der Spektrenbibliothek gespeicherten Spektren erleichtert.

5. Interpretation von Massenspektren

Bei der Interpretation eines Massenspektrums ist folgendes Vorgehen sinnvoll:

A) Ermittlung der Massenskala und Bewertung der Intensitäten

Die Ionenhäufigkeiten in einem Massenspektrum können sich um Größenordnungen unterscheiden, deshalb ist bei der Messung auch auf Massenpeaks sehr kleiner Intensitäten zu achten. Andererseits enthält jede Hochvakuumanlage Verunreinigungen (Pumpenöldämpfe, Wasserdampf, Luft aus Lecks, Dämpfe von Dichtungsmaterialien (z.B. Gummi), nicht vollständig abgepumpte Reste der unmittelbar vorher gemessenen Substanz u.ä.), die ein Untergrundspektrum verursachen. Bei genügend hoher Empfindlichkeit kann bei praktisch jeder Massenzahl ein Peak nachgewiesen werden.

B) Ermittlung des Molekülpeaks

Wenn es ein stabiles Molekülion gibt, ist es das Ion mit der größten Masse im Spektrum der jeweiligen Substanz. Umgekehrt muss die höchste registrierte Masse nicht notwendig der Molekülpeak sein, da manche Substanzen keinen oder nur einen sehr schwachen Molekülpeak haben (z.B. viele Alkohole). Es ist deshalb zu prüfen,

- ob die Ionen der nächst niedrigen Massen durch sinnvolle Abspaltung aus dem vermuteten Molekülpeak hervorgegangen sein können. Alkohole zeigen zwar keinen Molekülpeak, dafür aber Ionen, die durch Abspaltung von CH₃* oder H₂O entstehen ((M-15) - bzw. (M-18) - Peak).
- ob alle Fragmente zu einem Molekülion eine chemisch sinnvolle Massendifferenz aufweisen. So kann z.B. in Verbindungen mit C, H, N, und O ein Verlust von 5....13 Masseneinheiten nicht auftreten ("verbotene Massendifferenzen").

C) Suche nach Isotopieeffekten

Bei allen organischen Verbindungen kann die Isotopie des Kohlenstoffs als Zuordnungshilfe benutzt werden: Kohlenstoff besteht neben 12 C zu etwa 1.1% aus dem Isotop 13 C. Jeder Massenpeak, der von einem C- haltigen Fragment der Masse herrührt, zeigt einen Satelliten bei der Masse M +1. Die Intensität dieses Peaks ist n x 1.1% des 12 C Peaks, so dass aus dem Intensitätsverhältnis I(13 C) / I(12 C) die Zahl n der Kohlenstoffatome bestimmt werden kann :

$$n = \frac{I(^{13}C) / I(^{12}C)}{0.011}$$

Weitere wichtige Isotopieeffekte treten bei Chlor- und Bromverbindungen auf : Chlor besteht aus den Isotopen 35 Cl und 37 Cl im Häufigkeitverhältnis 3 : 1, Brom aus den Isotopen 79 Br

und 81 Br im Häufigkeitsverhältnis 1:1. Massenpeaks von chlor - und bromhaltigen Fragmenten zeigen daher ein charakteristisches Intensitätsmuster, das zur Bestimmung der Zahl der Br- bzw. Cl- Atomen im beobachteten Fragment verwendet werden kann (s. Anhang Bild 1).

D) Anwendung der Stickstoffregel

Da in organischen Verbindungen N das einzige Element mit ungerader Bindigkeit und gerader Massenzahl ist, gilt folgende "Stickstoffregel" :

- eine ungerade Massenzahl des Molekülions weist auf eine ungerade Zahl von N -Atomen im Molekül hin
- ist die Massenzahl des Molekülions geradzahlig, enthält das Molekül entweder gar keinen Stickstoff oder eine gerade Zahl von N - Atomen

E) Suche nach homologen Reihen (Ionenserien)

Bei der primären Spaltung des Molekülions aliphatischer Verbindungen können unterschiedlich große Fragmente der Kette abgespalten werden, was zum Auftreten von charakteristischen Ionenserien führt. Einige Ionenserien sind in Tab. 1 zusammengestellt.

Tab.1 Ionenserien

Verbindungsklasse	Einfachstes Ion	Ionenserie (m/q)
Amin	$H_2C=N^+H_2$ (30 u)	30, 44, 58, 72, 86, 100,
Ether, Alkohol	H ₂ C=O ⁺ H (31 u)	31, 45, 59, 73, 87, 101,
Keton	$H_3C-C=O^+$ (43 u)	43, 57, 71, 85, 99, 113,
Alkan	C ₂ H ₅ + (29 u)	29, 43, 57, 71, 85, 99,
Thiole, Thioether	$H_2C=S^+H$ (47 u)	61, 75, 99,

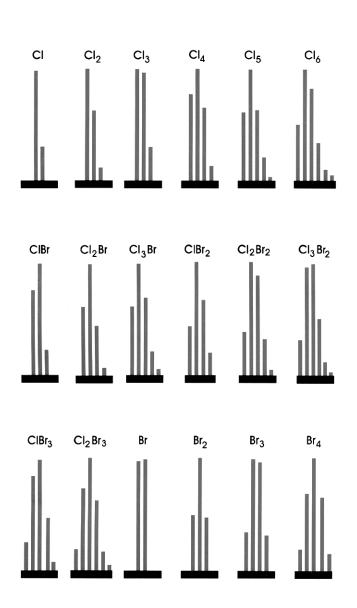
Bei Verbindungen mit einem aromatischen Ring treten infolge Ringfragmentierung Massenpeaks bei 39, 50, 51, 52 und 65 u auf (ringförmige Fragment - Ionen mit 3, 4 bzw. 5 C – Atomen).

F) Suche nach charakteristischen Fragmentionen

Einige für verschiedene Substanzen typische Massenzahlen sind in Tabelle 2 (s. Anhang) aufgeführt. Einzelheiten zur Entstehung dieser charakteristischen Fragmente sind der angegebenen Literatur zu entnehmen.

G) Suche nach charakteristischen Massendifferenzen

Bei der Abspaltung von neutralen Bruchstücken des Molekülions M + • treten im Massenspektrum Ionenpeaks auf, deren Massenzahl um die Masse des Neutralbruchstückes niedriger als die Molekülmasse ist. Diese Massendifferenzen liefern ebenfalls Hinweise zur Substanzidentifizierung.


6. Aufgaben

- Interpretation des Massenspektrums einer Verbindung mit bekannter Struktur
- Interpretation des Massenspektrums einer Verbindung mit unbekannter Struktur

Anhang

Bild 1: Isotopenpeakintensitäten

GRAPHICAL REPRESENTATION OF RELATIVE ISOTOPE PEAK INTENSITIES FOR ANY GIVEN ION CONTAINING THE INDICATED NUMBER OF HALOGENS

CHLORINE-BROMINE ISOTOPE ABUNDANCE RATIOS						
Cl-Br	X	X+2		X+6		X+10
Cl	100	32.5	717	λιο	λ10	XIIO
Cl ₂	100	65.0	10.6			
Cl ₃	100	97.5		3.4		
Cl ₄		100		10.5	0.9	
Cl ₅		100	65.0		3.4	0.2
Cl6	51.2	100	81.2	35.2	8.5	1.1
ClBr	<i>7</i> 6.6	100	24.4			
Cl ₂ Br	61.4	100	45.6	6.6		
Cl ₃ Br	51.2	100	65.0	1 <i>7</i> .6	1.7	
ClBr ₂	43.8	100	69.9	13. <i>7</i>		
Cl ₂ Br ₂	38.3	100	89.7	31.9	3.9	
Cl ₃ Br ₂	31.3	92.0	100	49.9	11.6	1.0
ClBr3	26.1	85.1	100	48.9	8.0	
Cl ₂ Br ₃	20.4	73.3	100	63.8	18.7	2.0
Br	100	98.0				
Br ₂	51.0	100	49.0			
Br3	34.0	100	98.0	32.0		
Br4	17.4	68.0	100	65.3	16.0	

Tab. 2 Massenkorrelationstabelle

Masse	Ion	Zusammensetzung des abgespaltenen Neutralteils (M+•= Molekülion)	Strukturelement oder Verbindungsklasse
12	C+ •		
13	CH +		
14	CH ₂ + • N +, N ₂ + + CO + +		
15	CH ₃ + NH ⁺	M + • - 15 (•CH₃) (NH)	unspezifisch, intensiv: Methyl, N - Äthylamine
16	O + •, O ₂ ++ NH ₂ +	M + • - 16 (CH ₄) (O) (•NH ₂)	Methyl (selten) Nitroverbindungen, Sulfone, Epoxide, N-Oxide primäre Amine
17	OH + NH ₃ + •	M + • − 17 (•OH) (NH ₃)	Säuren (besonders aromatische), Hydroxylamine, N – Oxide, Nitroverbindungen, Sulfoxide, tertiäre Alkohole primäre Amine
18	H ₂ O + •	(NH ₃) M + • – 18 (H ₂ O)	unspezifisch, O – Indikator intensiv: Alkohole, manche Säuren, Aldehyde, Ketone, Lactone, cyclische Äther
19	H ₃ O + F +	M + • – 19 (F)	Fluoride
20	HF+ • Ar ++ CH ₂ CN ++	M + • - 19 (F) M + • - 20 (HF)	Fluoride F - Indikator
21	C ₂ H ₂ O ++		
22	CO ₂ ++		
23	Na + •		
24	C ₂ + •		
25	C ₂ H +	M + • – 25 (•C ₂ H)	terminales Acetylenyl
26	C ₂ H ₂ + •	M + • – 26 (C ₂ H ₂)	Aromaten
27	CN + C ₂ H ₃ +	(•CN) M + • − 27 (•C ₂ H ₃)	Nitrile terminales Vinyl, manche Äthylester und N – Äthylamide, Äthylphosphate
	HCN + •	(HCN)	aromatisch gebundener N, Nitrile
28	C ₂ H ₄ + •	M + • - 28 (C ₂ H ₄)	unspezifisch; intensiv: Cyclohexene, Äthylester, Propylketone, Propylaromaten
	CO	(CO)	aromatisch gebundener O, Chinone, Lactone, Lactame, ungesättigte cyclische Ketone, Allylaldehyde
	N ₂ + • HCNH +	(N ₂)	Diazoverbindungen
29	C ₂ H ₅ + CHO + CH ₃ N+	M + • - 29 (•C ₂ H ₅) (•CHO)	unspezifisch; intensiv: Äthyl Phenole, Furane, Aldehyde

Masse	Ion	Zusammensetzung des abgespaltenen Neutralteils (M+•= Molekülion)	Strukturelement oder Verbindungsklasse
30	C ₂ H ₆ + • CH ₂ O + • NO + CH ₂ NH ₂ + N ₂ H ₂ + • N - Indikator BF + •	M + • - 30 (C ₂ H ₆) (CH ₂ O) (•NO)	Äthylalkane, Polymethylverbindungen cyclische Äther, Lactone, primäre Alkohole Nitro- und Nitrosoverbindungen
31	CH ₃ O +	M + • – 31 (•CH ₃ O)	Methylester, Methyläther, primäre Alkohole
	O - Indikator CH ₃ NH ₂ + • N ₂ H ₃ + CF •	(CH₃NH₂) (•N₂H₃)	N – Methylamine Hydrazide
32	CH ₃ OH + • O ₂ + •	M + • − 32 (CH ₃ OH)	Methylester, Methyläther
	O - Indikator S+• N ₂ H ₄ +•	(O ₂) (S)	cyclische Peroxide Sulfide
33	CH ₃ OH ₂ + SH + CH ₂ F +	M + • - 33 (•CH ₃ +H ₂ O) (•SH) (•CH ₂ F)	unspezifisch
34	SH ₂ + • S - Indikator	M + • - 34 (SH ₂) (•OH + •OH)	unspezifisch S – Indikator Nitroverbindungen
35	CI + SH ₃ +	M+•-35 (CI•) (•OH+H ₂ O)	Chloride Nitroverbindungen 2 x O - Indikator
36	HCl+•	M+ •- 36 (HCl) (H ₂ O+H ₂ O)	Chloride 2 x O - Indikator
37	C ₃ H +		
38 39	C ₃ H ₂ + • C ₃ H ₃ +	M+• 20 (-C II)	Avamatan
40	CH ₂ CN + C ₃ H ₄ + • Ar + •	M + • - 39 (•C ₃ H ₃) M + • - 40 (•CH ₂ CN)	Aromaten Cyanmethyl
41	C ₃ H ₅ + CH ₃ CN + •	M + • - 41 (•C ₃ H ₅)	Alicyclen (besonders polycyclische), Alkene 2 – Methyl- N- Aromaten, N- Methylaniline
42	C ₃ H ₆ + •	(CH ₃ CN) M + • – 42 (C ₃ H ₆)	unspezifisch; intensiv: Propylester, Butylke-
	C ₂ H ₂ O + •	(C ₂ H ₂ O)	tone, Butylaromaten, Methylcyclohexene Acetate, (besonders Enolacetate), Acetamide, Cyclohexenone, $\alpha\beta$ -ungesättigte Ketone
	CON + C ₂ H ₄ N +		
43	C ₃ H ₇ +	M + • - 43 (•C ₃ H ₇)	unspezifisch; intensiv: Propyl, Cycloalkane, Cycloalkanone, Cycloalkylamine, Cycloalka- nole, Butylaromaten
	C ₂ H ₃ O +	(•CH₃CO)	Methylketone, Acetate, aromatische Methyläther
	CONH + •		

Masse	Ion	des abg Neu	mensetzung gespaltenen tralteils Molekülion)	Strukturelement oder Verbindungsklasse
44	C ₃ H ₈ + • C ₂ H ₆ N + C ₂ H ₄ O + • CO ₂ + • CH ₄ Si + •		(C ₃ H ₈) (C ₂ H ₆ N•) (C ₂ H ₄ O) (CO ₂)	Propylalkane N,N – Dimethylamine, N-Äthylamine Cycloalkanole, cyclische Äther, Äthylenketale Anhydride, Lactone, Carbonsäuren
45	C ₂ H ₅ O + CHS + CHO ₂ + C ₂ H ₇ N + • O - Indikator S - Indikator		(•CHO₂) (C₂H ₇ N)	Äthylester, Äthyläther, Lactone, Äthylsulfonate, Äthylsulfone Carbonsäuren N,N- Dimethylamine, N - Äthylamine
46	C ₂ H ₅ OH + • CH ₂ O ₂ + • NO ₂ +		$(H_2O + C_2H_4)$ $(H_2O + CO)$ (NO_2)	Äthylester, Äthyläther, Äthylsulfonate primäre Alkohole Carbonsäuren Nitroverbindungen
47	CH ₃ S + S - Indikator CCl + C ₂ H ₅ OH ₂ + CH(OH) ₂ + 2 x O - Indikator PO + P - Indikator	M + • – 47	(CH₃S•) (HNO₂)	Methylsulfide Nitroverbindungen
48	CH ₃ SH + • SO + • CHCl + •	M + • – 48	(CH ₄ S) (SO)	Methylsulfide Sulfoxide, Sulfone, Sulfonate
49	CH ₂ Cl + CH ₃ SH ₂ +	M + • – 49	(•CH ₂ CI)	Chlormethyl
50	CF2+ • C ₄ H ₂ + • CH ₃ Cl+ •	M + • – 50	(CF ₂)	Trifluormethylaromaten, perfluorierte Ali- cyclen
51	C ₄ H ₃ + CHF ₂ +			
52	C ₄ H ₄ + •			
53	C ₄ H ₅ +	8440 51	(6.11.)	
54	C ₄ H ₆ + • C ₂ H ₄ CN +	M + • – 54	(•C ₂ H ₄ CN)	Cyclohexene Cyanäthyl
55	C ₄ H ₇ + C ₃ H ₃ O +	M + • – 55	,	unspezifisch; intensiv: Cycloalkane, Butylester, N- Butylamide
56	C ₄ H ₈ + •	M + • – 56	` ,	Butylester, N – Butylamide, Pentylketone, Cyclohexene, Tetraline, Pentylaromaten
	C ₃ H ₄ O + •		(C ₃ H ₄ O)	Methylcyclohexanone, eta – Tetralone
57	C ₄ H ₉ + C ₃ H ₅ O + C ₃ H ₂ F +	M + • – 57	(•C ₄ H ₉) (•C ₃ H ₅ O)	unspezifisch Äthylketone

Masse	Ion	Zusammensetzung des abgespaltenen Neutralteils (M+•= Molekülion)	Strukturelement oder Verbindungsklasse
58	C ₃ H ₆ O + • O - Indikator C ₃ H ₈ N + N - Indikator	M + • - 58 (C ₄ H ₁₀) (C ₃ H ₆ O)	Alkane $\alpha-$ Methylalkanale, Methylketone, Isopropylidenglykole
59	C ₃ H ₇ O + C ₂ H ₅ NO + •	M + • − 59 (•C ₃ H ₇ O) (•C ₂ H ₃ O ₂) (C ₃ H ₉ N)	Propylester, Propyläther Methylester Amine; Amide
60	C ₃ H ₈ O + • C ₂ H ₄ O ₂ + • O - Indikator CH ₂ NO ₂ + C ₂ H ₆ NO +	M + • - 60 (C ₃ H ₈ O) (C ₂ H ₄ O ₂) (CH ₃ OH +CO)	Propylester, Propyläther Acetate Methylester
61	C ₂ H ₅ O ₂ + 2 x O – Indikator C ₂ H ₅ S + S – Indikator	M + • − 61 (•C ₂ H ₅ O ₂) (•C ₂ H ₅ S)	Glykole, Äthylenketale Äthylsulfide
62	C ₂ H ₆ O ₂ + • C ₂ H ₃ Cl + •	M + • - 62 (C ₂ H ₆ O ₂) (C ₂ H ₆ S)	Methoxymethyläther, Äthylenglykole, Äthylenketale Äthylsulfide
63	C ₂ H ₄ Cl + COCl + C ₅ H ₃ +	M + • − 63 (•C ₂ H ₄ Cl) (•Cl + CO)	Chloräthyl Säurechloride
64	SO ₂ + • S ₂ + • C ₅ H ₄ + •	M + • - 64 (SO ₂) (S ₂)	Sulfone, Sulfonate Disulfide
65	C ₅ H ₅ + H ₂ PO ₂ +	M + • − 65 (•S ₂ H)	Disulfide
66 67	C ₅ H ₆ + • C ₄ H ₃ O + C ₅ H ₇ +	M + • - 66 (C ₅ H ₆) M + • - 67 (•C ₄ H ₃ O)	Cyclopentene Furylketone
68	C ₅ H ₈ + • C ₄ H ₄ O + • C ₃ H ₆ CN +	M + • - 68 (C ₅ H ₈) (C ₄ H ₄ O)	Cyclohexene, Tetraline Cyclohexanone, β – Tetralone
69	C ₅ H ₉ + CF ₃ + C ₄ H ₅ O + C ₃ HO ₂ +	M + • − 69 (•C ₅ H ₉) (•CF ₃)	Alicyclen, Alkene Trifluormethyl
70	C ₅ H ₁₀ + • C ₄ H ₆ O + • C ₄ H ₈ N +		Alkane, Alkene, Cycloalkane Cycloalkanone Pyrrolidine
71	C ₅ H ₁₁ + C ₄ H ₇ O +		Alkane, größere Alkylreste Alkanone, Alkanale, Tetrahydrofurane

Masse	Ion	Zusammensetzung des abgespaltenen Neutralteils (M+•= Molekülion)	Strukturelement oder Verbindungsklasse
72	C ₄ H ₈ O + • C ₄ H ₁₀ N + C ₆ +		Alkanone, Alkanale O – Indikator aliphatische Amine perhalogenierte Benzole
73	C ₄ H ₉ O + C ₃ H ₅ O ₂ + C ₃ H ₉ Si +		Alkohole, Äther, Ester O - Indikator Säuren, Ester, Lactone Trimethylsilylverbindungen
74	C ₄ H ₁₀ O + • C ₃ H ₆ O ₂ + •		Äther Carbonsäuremethylester, α – Methylcarbonsäuren
75	C ₃ H ₇ O ₂ + C ₃ H ₇ S + C ₂ H ₇ SiO +		Methylacetale, Glykole 2 x O – Indikator Sulfide, Thiole S – Indikator Trimethylsiloxylverbindungen
76	C ₆ H ₄ + •		Aromaten
77	C ₆ H ₅ + C ₅ H ₃ N+ • C ₃ H ₆ Cl +		Aromaten Chloride
78	C ₆ H ₆ + •		Aromaten
78	C ₅ H ₄ N ⁺ C ₃ H ₇ Cl + •		Pyridine Chloride
79	C ₆ H ₇ + C ₅ H ₅ N + • Br +		Aromaten mit H-tragenden Substituenten Pyridine, Pyrrole Bromide
80	C ₆ H ₈ + • C ₅ H ₄ O + • HBr + • C ₅ H ₆ N +		Cyclohexene, polycyclische Alicyclen Cyclopentanone Bromide Pyrrole, Pyridine
81	C ₆ H ₉ + C ₅ H ₅ O +		Cyclohexane, Cyclohexenyle, Diene Furane, Pyrane
82	C ₆ H ₁₀ + • C ₅ H ₆ O + • C ₅ H ₈ N + C ₄ H ₆ N ₂ + •		Cyclohexane Cyclopentanone, Dihydropyrane Tetrahydropyridine Pyrazole, Imidazole
83	C ₆ H ₁₁ +		Alkene, Cycloalkane, monosubstituierte
0.4	C H N +		Cycloalkanone
84 85	C ₅ H ₁₀ N + C ₆ H ₁₃ +		Piperidine, N – Methylpyrrolidine Alkane
	C ₅ H ₉ 0 +		Alkanone, Alkanale, Tetrahydropyrane, Fettsäurederivate
86	C ₅ H ₁₀ O + • C ₅ H ₁₂ N +		Alkanone, Alkanale aliphatische Amine N – Indikator
87	C ₅ H ₁₁ O + C ₄ H ₇ O ₂ +		Alkohole, Äther, Ester O – Indikator Ester, Säuren
88	C ₄ H ₈ O ₂ + •		Fettsäureäthylester, α – Methyl-methylester, α – C ₂ -Carbonsäuren
89	C ₄ H ₉ O ₂ + C ₄ H ₉ S +		Diole, Glykoläther, Sulfide 2 x O – Indikator
90	C ₇ H ₆ + •		disubstituierte Aromaten

Masse	Ion	Zusammensetzung des abgespaltenen Neutralteils (M+•= Molekülion)	Strukturelement oder Verbindungsklasse
91	C ₇ H ₇ + C ₄ H ₈ Cl +		Aromaten Alkylchloride
92	C ₇ H ₈ + • C ₆ H ₆ N +		Alkylbenzole Alkylpyridine
93	C ₆ H ₅ O + C ₆ H ₇ N + • CH ₂ Br +		Phenole, Phenolderivate Aniline Bromide
94	C ₆ H ₆ O + • C ₅ H ₄ NO +		Phenolester, Phenoläther Pyrrylketone, Pyridonderivate
95	C ₅ H ₃ O ₂ +		Furylketone
96	C ₇ H ₁₂ + •		Alicyclen
97	C ₇ H ₁₃ + C ₆ H ₉ O + C ₅ H ₅ S +		Cyclohexane, Alkene Cycloalkanone Alkylthiophene
98	C ₆ H ₁₂ N +		N - Alkylpiperidine
99	C ₇ H ₁₅ + C ₆ H ₁₁ O +		Alkane Alkanone
	C ₅ H ₇ O ₂ + H ₄ PO ₄ +		Äthylenketale Alkylphosphate
104	C ₈ H ₈ + • C ₇ H ₄ O + •		Tetralinderivate, Phenyläthylderivate disubstituierte α – Ketobenzole
105	C ₈ H ₉ + C ₇ H ₅ O + C ₆ H ₅ N ₂ +		Alkylaromaten Benzolderivate Diazophenylderivate
111	C ₅ H ₃ OS +		Thiophenylderivate
115	C ₉ H ₇ +		Aromaten
	C ₆ H ₁₁ O ₂ + C ₅ H ₇ O ₃ +		Ester Diester
119	C ₉ H ₁₁ + C ₈ H ₇ O + C ₂ F ₅ + C ₇ H ₅ NO + •		Alkylaromaten Tolylketone Perfluoräthylderivate Phenylcarbamate
120	C ₇ H ₄ O ₂ + • C ₈ H ₁₀ N +		Salicylsäurederivate, γ- Benzpyrone Pyridine, Aniline
121	C ₈ H ₉ O + C ₇ H ₅ O ₂ +		Hydroxybenzolderivate Hydroxybenzolderivate
127	C ₁₀ H ₇ + C ₆ H ₇ O ₃ + C ₆ H ₆ NCI + • J +		Naphthaline ungesättigte Diester chlorierte N – Aromaten Jodide
128	C ₁₀ H ₈ + • C ₆ H ₅ OCl + • HJ + •		Naphthaline chlorierte Hydroxybenzolderivate Jodide
130	C ₉ H ₈ N + C ₉ H ₆ O + •		Chinoline, Indole Naphthochinone
131	C ₁₀ H ₁₁ + C ₅ H ₇ S ₂ + C ₃ F ₅ +		Tetraline Thioäthylenketale Perfluoralkylderivate

Masse	Ion	Zusammensetzung des abgespaltenen Neutralteils (M++= Molekülion)	Strukturelement oder Verbindungsklasse
135	C ₄ H ₈ Br +		Alkylbromide
141	C ₁₁ H ₉ +		Naphthaline
142	C ₁₀ H ₈ N +		Chinoline
149	C ₈ H ₅ O ₃ +		Phthalate
152	C ₁₂ H ₈ + •		Diphenylaromaten
165	C ₁₃ H ₉ +		Diphenylmethanderivate (Fluorenylkation)
167	C ₈ H ₇ O ₄ +		Phthalate
205	C ₁₂ H ₁₃ O ₃ +		Phthalate
223	C ₁₂ H ₁₅ O ₄ +		Phthalate